欧美brazzers_欧日韩在线视频_欧美日韩一级大片_免费欧美一级视频_精品久久久久久久免费人妻_精品人妻无码一区二区三区换脸_在线观看免费黄色小视频_阿v天堂2017_日本一级大毛片a一 _av天堂一区二区三区

 
-
Important news
-
News
-
In-Depth
-
Shenzhen
-
China
-
World
-
Business
-
Speak Shenzhen
-
Culture
-
Leisure
-
Photos
-
Lifestyle
-
Travel
-
Tech
-
Special Report
-
Digital Paper
-
Opinion
-
Features
-
Kaleidoscope
-
Health
-
Markets
-
Sports
-
Entertainment
-
Business/Markets
-
World Economy
-
Weekend
-
Newsmaker
-
Advertisement
-
Diversions
-
Movies
-
Hotels and Food
-
Yes Teens!
-
News Picks
-
Glamour
-
Campus
-
Budding Writers
-
Fun
-
Qianhai
-
CHTF Special
-
Futian Today
在線翻譯:
szdaily -> In-Depth -> 
Feeding the future: Why the next farm revolution won’t be about fertilizer
    2025-11-26  08:53    Shenzhen Daily

Sterling Platt

SterlingPlatt@qq.com

AT the recent China Hi-Tech Fair in Shenzhen, Prof. He Liang delivered a harsh reality check to the Shenzhen Association for Artificial Intelligence. The “Green Revolution” — the strategy we’ve used since World War II to grow more food by adding more fertilizer, building more canals, and using bigger machines — has finally hit a wall. For decades, this brute-force approach kept the world fed, but we can no longer squeeze more food out of the ground just by adding more chemicals.

This comes at a dangerous time. By 2050, the global population is expected to rocket toward 9.1 billion people. To feed everyone, the United Nations says we need to grow 70% more food than we do today. This is even harder in China, where there is very little extra land left to farm. In fact, the amount of farmland per person in China is only 40% of the global average.

To fix this, Prof. He is calling for a shift to “New Quality Productive Forces.” While the name sounds complicated, the idea is simple. The last agricultural revolution was about quantity — dumping more water and chemicals on the soil. This new revolution is about quality — using data and computer programs to make smarter decisions. In this future, a big harvest won’t depend on how much fertilizer you buy, but on how smart your algorithms are.

The professor in the field

Prof. He is the perfect person to explain this shift because he lives between two worlds: the high-tech lab and the dusty farm. He is a researcher at Tsinghua University, a professor at Xinjiang University, and leads a cutting-edge lab focused on cognitive computing. In 2020, he shifted his focus from voice recognition at Tsinghua to applying his tech skills directly in the fields of Xinjiang.

He defines “smart farming” as something much bigger than just a self-driving tractor. He sees it as a complete nervous system for the farm. It connects sensors, artificial intelligence (AI), and the Internet of Things into a continuous loop: see, think, decide, and act.

This system watches over crop health, carefully measures out water and fertilizer, and spots pests or droughts before they can destroy a harvest.

The good news is that the first step — giving the farm “eyes” — is largely solved. Prof. He points to the explosion of the drone industry. “Ten years ago, putting high-quality sensors in a field cost tens of thousands of yuan,” he noted. “Today, thanks to mass production and cheap drones, the cost has crashed to just hundreds.”

The ‘one-shot’ economy

We have successfully built the “eyes” of the farm with drones and sensors, but building the “brain” is much harder. Prof. He’s work focuses on teaching AI how to make the right choices for a farm.

In the digital world, this is easy. A computer can play millions of games of Go or Starcraft in a few days. It can lose millions of times, learn from its errors, and eventually become a master strategist.

But a farm isn’t a video game. “Agriculture is a low-frequency science,” He explained. In simple terms, you don’t get to hit “restart.” You only get one harvest a year. You cannot ask a farmer to let an AI “fail fast” on their land just to learn a lesson. If the AI makes a bad call — like not watering the plants during a heatwave or using the wrong amount of fertilizer — the crops die. And if the crops die, the farmer’s family could go bankrupt.

This risk makes farmers deeply risk-averse, a concept tech companies often struggle to grasp. Prof. He illustrated this with the cotton fields of Xinjiang. Even though there are cheaper Chinese machines available, many farmers still pay extra for American-made John Deere cotton harvesters.

They are doing it out of fear. “In the 20-day harvesting window,” Prof. He noted, “mechanical failure may cause hundreds of thousands of yuan in losses.” Farmers are willing to pay more for peace of mind.

Therefore, the transition must respect the unforgiving biological timeline and the farmers’ fragile financial reality. This requires a new level of cooperation among the government, scientists, and the agrarian workforce.

Right now, that cooperation is blocked by “data silos.” In other words, farmers and companies keep their data locked away like secret recipes, not wanting to share their soil records or yield numbers with anyone else.

To fix this, Prof. He proposes a solution called “data assetization.” He argues that in the era of smart farming, data is an input as vital as land, labor, or machinery. It is no longer just a byproduct of farming; it is a raw material necessary to create value. But if we want farmers to share this “digital crop,” they need to be paid for it.

Prof. He suggests that the government needs to set a standard rulebook for how this data is bought and sold. This would allow information to flow freely between different regions and machines, creating a shared brain for agriculture — a goal that both China and the United States are currently racing to achieve.

The digital twin:

Manufacturing experience

For Prof. He, solving the problem of “data silos” is only half the battle. Even if every farmer in Xinjiang shared their data tomorrow, a “biological speed limit” remains: nature simply moves too slowly to train a reliable AI. To learn effectively, an algorithm would need centuries of drought, flood, and pestilence data — time that we do not have.

Since nature cannot be sped up, Prof. He’s team chose to simulate it. They constructed a “digital twin” of the Xinjiang cotton fields. They started with a widely used biophysical simulator (DSSAT) for generic cotton.

To make it useful for Xinjiang, they calibrated this simulator to local conditions by integrating historical climate records, specific soil profiles, and the biological details of a local cotton variety.

The accuracy was striking. When tested against the 2023 harvest, the digital twin matched real-world results with 85.6% precision. The team then used this model to generate 150,000 virtual scenarios based on 43 years of climate data.

This created a massive library of “synthetic data.” It allowed the AI to live through the bone-dry heat of 1982 and the severe drought of 2013 repeatedly, effectively learning the consequences of every irrigation decision without ever risking a real farmer’s livelihood.

The need for speed

This synthetic data foundation allowed the team to solve immediate practical problems. An urgent challenge was deciding, in real time, whether to irrigate when water becomes available.

In the arid regions of Xinjiang, water is delivered via canals according to a strict schedule, but emergency repairs, weather shifts, and the needs of other farms can cause sudden disruptions. With so many changing factors, the team found that they needed to simulate 528 possible scenarios to find the optimal decision.

Traditionally, running these complex simulations would take about 42 hours — far too long for a farmer making daily decisions. However, by training on their massive synthetic dataset, the team distilled the model into a streamlined AI that can do the math in just 24 minutes, well within the decision window. In 2024, applying this fast-thinking AI, the cotton yield increased by 8.5% over the baseline, while water use was reduced by 4%.

Escaping the

‘average’ trap

Beyond immediate logistics, the team tackled a deeper strategic problem: the danger of “average” thinking. Standard AI optimizes for the average outcome, which might hide a small risk of total crop failure.

Since these disasters are too rare to learn from in the real world, the team used the synthetic data as a “time machine,” forcing the AI to survive 43 years of historical climate extremes over and over again. By monitoring 17 distinct health indicators of the living plant, the AI learned to prioritize survival over aggressive pursuit of yield maximization.

The results validated this conservative approach. In 2024, this risk-aware AI outperformed traditional practices, boosting yield by nearly 13.6% while improving water efficiency by 6.7%.

The rise of the digital

agronomist

The urgency of these innovations extends beyond yield charts; it addresses a looming demographic crisis. Prof. He highlighted a stark reality: China’s average farmer is now 56 years old. He observed that younger generations are increasingly disconnected from farming.

China’s goal, therefore, is not to replace the farmer, but to evolve the profession. This is the ultimate promise of “New Quality Productive Forces” — a shift that relies on intelligence rather than muscle. Prof. He envisions a future where the physical burden is finally lifted, and the farmer of tomorrow becomes a “digital agronomist.” In this new era, they will manage algorithms from a screen, securing the nation’s food supply through data rather than sweat.

深圳報業(yè)集團版權所有, 未經授權禁止復制; Copyright 2010-2020, All Rights Reserved.
Shenzhen Daily E-mail:szdaily@126.com

在线观看免费不卡av| 手机看片福利日韩| 一级黄色大片网站| www.毛片com| 亚洲成人av影片| 中文字幕av久久爽av| 亚洲精品毛片一区二区三区| www欧美com| 中文字幕一区二区三区波野结| 国产在线一卡二卡| 一区二区三区播放| 又大又硬又爽免费视频| 亚洲国产一二三区| 国产一级不卡毛片| 50一60岁老妇女毛片| 妺妺窝人体色www在线下载| 91久久免费视频| 国产精彩视频在线| 希岛爱理中文字幕| 国产精品无码AV| 日日摸日日碰夜夜爽av| 亚洲少妇一区二区| 亚洲男人天堂av在线| 亚洲久久久久久久| 国产一卡二卡三卡| 91免费黄视频| 中国老熟女重囗味hdxx| 免费不卡av网站| 黄色精品视频在线观看| 国产麻豆免费视频| 国产精品入口免费软件| 中文字幕一区二区三区人妻电影| www.国产色| 亚洲精品少妇一区二区| 麻豆网站免费观看| 男人的天堂一区| 日韩精品一区二区在线视频| 一区二区三区人妻| 欧美一级视频免费观看| 一卡二卡三卡视频| 手机在线看片日韩| 中文 欧美 日韩| 亚洲国产精品毛片av不卡在线| 亚洲国产精品成人综合久久久| 亚洲欧美综合自拍| 午夜肉伦伦影院| 97伦伦午夜电影理伦片| 在线观看免费黄色小视频| 99免费视频观看| 国产午夜精品久久久久久久久| 国产剧情精品在线| 欧美日韩精品在线观看视频 | 青青草影院在线观看| 天堂在线观看av| 懂色av.com| 大j8黑人w巨大888a片| 3d动漫精品啪啪一区二区下载| 在线免费a视频| 一级黄色高清视频| 国产乱子伦精品无码专区| 中文字幕一区三区久久女搜查官| 一区两区小视频| 一区二区三区国产好的精华液| 成人在线观看毛片| 成人免费毛片日本片视频| 91激情在线观看| 久久97人妻无码一区二区三区| 337p亚洲精品色噜噜狠狠p| 国产精品无码在线| 丰满人妻一区二区三区无码av| 成人免费看片98| 日本久久久精品视频| 丝袜美腿小色网| 人妻无码一区二区三区| av 一区二区三区| 亚洲日本视频在线观看| 四虎精品一区二区三区| 亚洲婷婷综合网| 91 在线视频观看| 国产69精品久久久久999小说| 在线观看免费黄色网址| 人妻 丝袜美腿 中文字幕| 国产情侣在线播放| 欧美一二三区视频| 亚洲精品视频三区| 亚洲人成无码网站久久99热国产 | 亚洲色图狠狠干| 九九热最新视频| 欧美日韩国产精品综合| 色综合av综合无码综合网站| eeuss中文| 999精品在线视频| 久久久久亚洲AV成人无码国产| 99视频国产精品免费观看a| 日本三级一区二区| 亚洲天堂av一区二区三区| 久久久久狠狠高潮亚洲精品| 日本xxxxx18| 超碰人人人人人人人| 精品无码人妻一区| 亚洲天堂资源在线| 亚洲国产精品第一页| 国产精品二区视频| 天天干天天插天天操| av中文字幕观看| 91黑人精品一区二区三区| 欧美在线观看不卡| 国产情侣自拍av| 久久99久久98精品免观看软件 | 成人免费无码av| 久久久久久久中文| 国产成人精品无码播放| 一本久道综合色婷婷五月| 欧美视频第一区| 成人黄色一区二区| 亚洲综合在线网站| 校园春色 亚洲色图| 超碰在线97免费| mm131亚洲精品| 中文 日韩 欧美| 久久久久久久久97| 久久精品国产av一区二区三区| 久久久久久福利| 成人午夜视频在线播放| 人人妻人人爽人人澡人人精品 | 91福利免费视频| 国产美女精品视频国产| 性欧美8khd高清极品| 人妻中文字幕一区| 天堂va欧美va亚洲va老司机| 在线精品一区二区三区| 国产伦精品一区二区三区视频女| 天堂资源在线视频| 日本一级淫片演员| 国自产拍偷拍精品啪啪一区二区| 三级4级全黄60分钟| 亚洲精品永久视频| 亚洲熟妇无码乱子av电影| 中文字幕一区二区三区人妻四季| 国产视频www| 亚洲人在线观看视频| 亚洲精品国产91| 97精品国产97久久久久久粉红| 久久国产精品网| 高清一区在线观看| 久久久久久久久影院| 91av久久久| 天堂成人在线观看| 亚洲av成人无码久久精品| 1024手机在线视频| 国产一线二线三线在线观看| 国产主播在线观看| 国产又粗又猛又色又| 日本少妇xxx| 日本成人免费在线观看 | 男人添女荫道口图片| 亚洲三级在线观看视频| 久久99国产综合精品免费| 精品国自产在线观看| 国产精品久久久久久亚洲色| 麻豆一区在线观看| 青娱乐自拍偷拍| 欧美精品一区二区蜜桃| 99免费在线视频| 好吊色视频一区二区三区| 唐朝av高清盛宴| av丝袜天堂网| 久久这里只有精品9| 亚洲欧美日韩中文字幕在线观看| 人人艹在线视频| 男女午夜激情视频| www.久久精品视频| 特黄特色免费视频| 日日噜噜夜夜狠狠久久丁香五月| 日韩一级理论片| 中文字幕免费观看视频| 国产精品入口麻豆| 999久久欧美人妻一区二区| 91看片破解版| 国产v片在线观看| 久久久久亚洲av无码a片| 97国产精东麻豆人妻电影 | 无码人妻av免费一区二区三区| 午夜在线视频观看| 一级全黄肉体裸体全过程| 日本黄大片一区二区三区| 91福利在线观看视频| 欧美另类z0zx974| 苍井空浴缸大战猛男120分钟| 国产在线一级片| 亚洲av无码国产精品久久| www.日本在线播放| 蜜臀尤物一区二区三区直播| 国产精品久久久久久久无码| 国产免费一区二区视频| 秋霞av一区二区三区| 亚洲欧美日本一区| 国产三级三级三级看三级| 国产美女三级无套内谢| 亚洲天堂一级片| 久草视频免费在线| 大乳护士喂奶hd| 亚洲欧美另类动漫| 精品国产无码AV| 国风产精品一区二区| 九九热在线免费观看| 成年人网站免费在线观看| 日韩av片网站| 囯产精品久久久久久| 欧美人与动牲交xxxxbbbb| 亚州国产精品视频| 特级西西人体4444xxxx| 欧美伦理视频在线观看| 亚洲免费黄色片| 青青青青在线视频| 888奇米影视| 青青草综合视频| 中文字幕一区二区三区免费看| 神马久久精品综合| 国产成人免费看| youjizz亚洲女人| 日韩av在线电影| 久操视频免费看| 亚洲国产综合久久| 国产亚洲精品熟女国产成人| 免费一级肉体全黄毛片| 国产精品久久AV无码| 亚洲欧美偷拍另类| 日本五十肥熟交尾| 亚洲女人在线观看| 伊人网伊人影院| 九九视频在线免费观看| 国产精品扒开腿做爽爽| 人人干人人干人人干| 成人性视频免费看| 国产性生活视频| 无码人妻精品一区二区三区夜夜嗨| 超碰中文字幕在线| 天天干天天色天天爽| 亚洲永久精品视频| 国产在线播放观看| 神马午夜精品95| 天天操,天天操| 欧美丰满少妇人妻精品| 国产污视频在线观看| 天天摸日日摸狠狠添| 中文字幕精品视频在线观看| www.-级毛片线天内射视视| 99在线精品视频免费观看软件| 亚洲不卡中文字幕无码| 中文字幕18页| 国产一级特黄视频| 欧美一级免费在线观看| 成人高潮片免费视频| 日韩一区二区三区不卡视频| 亚洲熟妇无码av| 无码人妻一区二区三区免费| 免费极品av一视觉盛宴| 手机av免费在线观看| 日韩欧美中文视频| 日本黄色免费片| 99在线精品视频免费观看软件 | 精品无码国模私拍视频| 亚洲日本在线播放| 国产无码精品久久久| 97超碰人人爱| wwwww在线观看| 国产剧情在线视频| 黄色av网址在线播放| 人妻少妇精品视频一区二区三区| 免费看日批视频| 国产性xxxx18免费观看视频| 久久精品老司机| 一级黄色片在线| 最新国产黄色网址| 午夜国产福利一区二区| 天天爱天天干天天操| 国产一级在线视频| 久久成人福利视频| 人人妻人人澡人人爽人人精品 | 无码人妻丰满熟妇精品区| jizzjizzxxxx| 中文字幕在线观看免费高清| av免费在线不卡| 久草视频中文在线| 成年人午夜视频在线观看| 亚洲熟妇无码av| 亚洲va欧美va| 久久国产黄色片| 黄色aaa级片| 国产大尺度在线观看| 亚洲啪av永久无码精品放毛片| 男操女视频网站| 污污的网站免费| 国产乱人伦精品一区二区三区| 一级特级黄色片| 亚洲第一成年人网站| 青青青国产在线 | www.51色.com| 国产日韩欧美精品在线观看| 亚洲成人黄色av| 女人18毛片水真多18精品| 中文字幕视频网站| 69久久久久久| 久久精品无码中文字幕| 老司机福利在线观看| 亚洲成人激情小说| av男人天堂网| 你懂的国产在线| 精国产品一区二区三区a片| 69堂免费视频| 菠萝蜜视频在线观看入口| 女人裸体性做爰全过| 国产精品手机在线观看| 神马久久久久久久久久| 国产99视频在线| 真实新婚偷拍xxxxx| 香蕉免费毛片视频| 强行糟蹋人妻hd中文| 日本三级免费观看| 日韩精品免费一区| 日韩欧美中文字幕视频| 欧美日韩生活片| 国产精品一区二区入口九绯色| 中国老熟女重囗味hdxx| 好吊视频一区二区三区| 91中文字幕在线视频| 伦av综合一区| 日韩aaaaaa| 欧美成人三级在线观看| 激情视频免费网站| 黄色成人免费看| 日韩精品免费播放| 亚洲乱码中文字幕久久孕妇黑人| 日本大胆人体视频| 欧美性猛交xxxxx少妇| 亚洲毛片亚洲毛片亚洲毛片| 69视频在线观看免费| 久久精品一区二区免费播放 | 国产免费一区二区三区最新6| 三级在线观看网站| 色婷婷激情五月| 成人乱码一区二区三区| 精品人妻一区二区三区浪潮在线| 国产一区二区三区四区视频| 中文字幕精品一区二区精| 久久这里只有精品9| 亚洲天堂网在线视频| 在线观看视频中文字幕| 国产喷水吹潮视频www| 99久久精品无免国产免费| 国产免费一区二区三区最新不卡| 国产又粗又长又黄| xxxwww在线观看| 免费激情视频网站| 色婷婷狠狠18禁久久| 老熟妇精品一区二区三区| 国产成人无码一区二区在线观看| 日本xxx在线播放| av永久免费观看| 日韩在线视频网址| 国产精品88久久久久久妇女| 成人免费观看在线| 国产精品欧美激情在线观看| 国产免费人做人爱午夜视频| 做a视频在线观看| 自拍偷拍欧美亚洲| 中文字幕乱码在线观看| a视频免费在线观看| 天天综合网在线| 在线免费观看a级片| 男人天堂资源网| 免费特级黄色片| 91视频免费版污| 国产一级大片在线观看| 91视频久久久| 成人久久久精品国产乱码一区二区| 韩国av中国字幕| 久久午夜精品视频| 91精品国产91久久久久麻豆 主演| 欧美性猛交久久久乱大交小说| 日韩av影视大全| 一区二区乱子伦在线播放| 手机在线不卡av| www..com.cn蕾丝视频在线观看免费版 | 国产黄色一区二区| 香蕉在线观看视频| 波多野结衣一二三四区| 日韩一级特黄毛片| 五月天中文字幕在线| 无码人妻久久一区二区三区| 欧日韩在线视频| 黄色片在线观看免费| 九一国产精品视频| 久久婷婷综合国产| 一级黄色片网站| 国产老熟女伦老熟妇露脸| 日本一级淫片演员| av中文字幕网址| 中文字幕在线网站|